Tuesday, 23 October 2018

6.0. PIPES

Energy losses from various sources reduce flow discharge when a fluid moves through a pipeline. A boundary layer is formed on the pipe walls which causes continuous resistance. Velocity decreases from the center of the pipe to zero (at the boundary)in the boundary layer. 




The total head loss along a specified length of pipeline is commonly referred to as the "head loss due to friction", which is denoted by . The rate of energy loss or energy gradient  .



Click here for pdf notes on Pipes



Click here for pdf copy of PROBLEM SET (HYDRAULICS) [reference: Hydraulics by King, Wisler, Woodburn]

Click here for pdf copy of HOMEWORK (HYDRAULICS)


Applying Bernoulli's equation to two sections on a pipe, 


                                   

head loss is categorized into two.


  1. Major head loss (due to friction)
  2. Minor head loss (local losses)

6.1. HEAD LOSS DUE TO FRICTION


Head loss due to friction is considered a major head loss which is continuous. It is assumed to occur at a uniform rate along the pipe when the size and quality are constant. 

There are different formulas used to determine the frictional loss.

6.1.1. DARCY WEISBACH FORMULA


A commonly used formula for pipes, Dary Weisbach's formula expresses the head in terms of velocity head.

                              

where:  f=  friction factor
            L=  length of pipe
            D= diameter of pipe
            V= velocity of fluid flow
            = head loss due to friction

If discharge is considered instead of velocity head.

                 

So

                
                                               
                    [SI units]




6.1.2. F VALUES FOR WATER

The friction factor, f, is a dimensionless coefficient which depends on the velocity of flow, diameter of pips, and density and viscosity of fluid.  Fanning's equation identified that friction factor is a function of the Reynold's number and the relative roughness of the pipe material. With the variation of friction factor characteristics with laminar and turbulent flows, the Hagen-Poiseuille equation is used to determine the Fanning equation:

                                [for laminar flow: Re<2100]

                    [for turbulent flow: Re>2100]


The Fannings table below represents friction factor for laminar flow in new cast iron pipes, welded steel pipes, wood pipes made of planed staves, concrete pressure pipes, and cement-lined steel pipes.


Pipe diaMean Velocity(V) in Feet per Second
(in)0.50 1.00 2.00 3.00 4.00 5.00 10.00 15.00 20.00
0.50.042 0.038 0.034 0.032 0.030 0.029 0.025 0.024 0.023
0.750.041 0.037 0.033 0.031 0.029 0.028 0.025 0.024 0.023
10.040 0.035 0.032 0.030 0.028 0.027 0.024 0.023 0.023
1.50.038 0.034 0.031 0.029 0.028 0.027 0.024 0.023 0.023
20.036 0.033 0.030 0.028 0.027 0.026 0.024 0.023 0.022
30.035 0.032 0.029 0.027 0.026 0.025 0.023 0.022 0.022
40.034 0.031 0.028 0.026 0.026 0.025 0.023 0.022 0.021
50.033 0.030 0.027 0.026 0.025 0.024 0.022 0.022 0.021
60.032 0.029 0.026 0.025 0.024 0.024 0.022 0.021 0.021
80.030 0.028 0.025 0.024 0.023 0.023 0.021 0.021 0.020
100.028 0.026 0.024 0.023 0.022 0.022 0.021 0.020 0.020
120.027 0.025 0.023 0.022 0.022 0.021 0.020 0.020 0.019
140.026 0.024 0.022 0.022 0.021 0.021 0.020 0.019 0.019
160.024 0.023 0.022 0.021 0.020 0.020 0.019 0.019 0.018
180.024 0.022 0.021 0.020 0.020 0.020 0.019 0.018 0.018
200.023 0.022 0.020 0.020 0.019 0.019 0.018 0.018 0.018
240.021 0.020 0.019 0.019 0.018 0.018 0.018 0.017 0.017
300.019 0.019 0.018 0.018 0.017 0.017 0.017 0.016 0.016
360.018 0.017 0.017 0.016 0.016 0.016 0.016 0.015 0.015
420.016 0.016 0.016 0.015 0.015 0.015 0.015 0.015 0.014
480.015 0.015 0.015 0.015 0.014 0.014 0.014 0.014 0.014
540.014 0.014 0.014 0.014 0.014 0.014 0.013 0.013 0.013
600.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.012
720.013 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012
840.012 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.011



RELATED TOPICS:


6.2. GENERAL METHOD OF DETERMINING DARCY WEISBACH'S FRICTION FACTOR- THE MOODY DIAGRAM

6.3  CONVERTING HEAD INTO PRESSURE

6.4. THE HYDRAULIC RADIUS
6.5. OTHER PIPE FORMULAS

6.6. MINOR LOSSES

6.7. PIPES AND RESERVOIRS

6.8. PIPES IN SERIES

6.9. PIPES WITH BRANCHES IN PARALLEL

6.10. THE THREE RESERVOIR PROBLEM

2 comments:

  1. thank you for posting very informative for help go to the link Structural Analysis India

    ReplyDelete
  2. thanks for information and content was amazing please do share more blogs
    ,Structural Analysis in India

    ReplyDelete